

oxide layer form urface, which results in metal loss and metal y w (loss of material as high as 20%, with the the higher the losses). Conventional a ry methods based on scrap melting a used by secondary metal recyclers, in consumption and CO₂ emissions. Ind rotective atmosphere can also be us per cost of electricity compared to rnaces are less used [3]. In Vortex consists of a vortex that is genera nical or electromagnetic device stex and due to the speed and m vortex, chips are immersed in are melted in a short period ts problems for melting lacqu um containing plastics, unles employed. The

At 300°C an oxid sible to reduce defined a maxim stage of 300°C.
Seven tests we

hed afterwards. It was so herature at the oxidant

termine the maximum

treatment capacity of the furnace in its oxidising at-mosphere treatment stage and the effect of the inert atmosphere treatment stage in the designed pilot plant. Different feeding rates and process parameters were defined at the semi-industrial trials, as shown in Tab. 2.

× 101		₹, € .	~, f	., t	~ · · · · · · · · · · · · · · · · · · ·	, / 9	~1 f ->	
Fee		60	90	120	90	120	120	
Oxidan		450	450	450	300	300	300	
Reside f		5	5	5	15	30	30	
Product oxida	Ī	380	440	480	135	135	135	
Inert furn		20	20	20	-	-	450	
Residence tin		4	4	4	-	-	15	
C (wt.%)		±0.2	0.34±0.1	0.39±0.1	4.77±0.4	4.33±0.9	1.03±0.1	
O (wt.%)		iden	ce0i28±0t00á	28±0:15)(Tj39Td14	p 2448 (R6 i.i23:98	5tdt(TeTrabr3.)39	8 T8 10 Z012	മി 0(- 80)ces

La **Metallurgia** Italiana

REFERENCES

- [1] Capuzzi, S.; Timelli, G. Preparation and Melting of Scrap in Aluminum Recycling: A Review. Metals 2018, 8, 249. https://doi.org/10.3390/met8040249.
- [2] Ferro, P., Bonollo, F., Cruz, S. Product design from an environmental and critical raw materials perspective. International Journal of Sustainable Engineering. 14. (2020). 1-11.
- [3] Brough D., Jouhara H. "The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery". International Journal of Thermofluids. 1-2. (2020) 1-38.
- [4] Li, N. & Qiu, K.. Study on De lacquer Used Beverage Cans by Vacuum Pyrolysis for Recycle. Environmental science & technology. 47. (2013)10.1021/es4022552.
- [5] Wagiman, A., Mustapa, M.S., Asmawi, R. et al. A review on direct hot extrusion technique in recycling of aluminium chips. Int J Adv Manuf Technol 106, 641–653 (2020).
- [6] Abdi R.; Mahdavinejad R.; Yavari A. et al. Production of Wire From AA7277 Aluminum Chips via Friction-Stir Extrusion (FSE). Metallurgical and Materials Transactions B. 45. (2014)10.1007/s11663-014-0067-2.
- [7] Kadir M.; Mustapa, M. S.; Latif N. et al. Microstructural Analysis and Mechanical Properties of Direct Recycling Aluminium Chips AA6061/Al Powder Fabricated by Uniaxial Cold Compaction Technique. Procedia Engineering. 184. 687-694. (2017). 10.1016/j. proeng.2017.04.141